Weather Forecasting Pdf 3,8/5 2717 reviews

The National Weather Service (NWS) provides forecasts and warnings for weather, hydrologic, and climate needs for the United States, its territories, adjacent waters and ocean areas. The mission is to protect of life and property and enhance the national economy. NWS data and products form a. May 11, 2018  Weather forecasting uses multiple methods for predicting the weather that include the climatology, analog, and persistence and trends methods. The best method with the least amount of errors relies on inputting weather data into supercomputers and using forecast models to predict weather changes. The business forecasting considers the long term. It focuses on product lines. The aggregate forecasting considers the aggregated (in terms of products) demand for each of the 12 -24 coming months. The item forecasting is an estimation of the demand for each item in the coming weeks. The need for spares is also required for the MRP. Weather Forecasting Below, match the map with the appropriate profession: Use the symbols below as a reference: Cold Front Warm Front High Pressure Low Pressure Clouds Rain Thunderstorms Hurricane Weather Map Meteorologist. In the box below, define the word “Meterologist” and explain what they do with weather maps. Numerical Weather Prediction (Weather Models) Numerical weather prediction (NWP) is a method of weather forecasting that employs a set of equations that describe the flow of fluids. These equations are translated into computer code and use governing equations, numerical methods. The simplest method of forecasting the weather, persistence, relies upon today's conditions to forecast the conditions tomorrow. This can be a valid way of forecasting the weather when it is in a steady state, such as during the summer season in the tropics. This method of forecasting strongly depends upon the presence of a stagnant weather. A Summary of Recommended Practices for Weather Forecasting (1) (November 2004) This document provides a first step towards the development of weather forecasting technique considered as a sequence of standard processes. The NMHSs are encouraged to use the recommended practices, evaluate their applicability and make the necessary adjustments.

•••Jupiterimages/Photos.com/Getty Images
By Laurie Brenner

The science of forecasting the weather gets better as new weather satellites are launched into orbit and technology improves. Meteorologists rely on data from satellites, ships, airplanes, weather stations and buoys, and devices dropped from airplanes or weather balloons. Climatologists and meteorologists utilize two basic types of forecasting: deterministic and probabilistic, both of which have multiple subsets. A deterministic forecast predicts a specific event that will occur at a precise location and place, as in the arrival of a hurricane or the touchdown of a tornado.

Probabilistic weather predictions suggest the prospect of weather events that may occur in a certain region during a set period, as in a storm that may last a few days. However, climate changes due to excess greenhouse gases in the atmosphere cause frustration for forecasters as it gets harder to predict weather that changes because of an outside influence that doesn't follow seasonal trends or averages.

TL;DR (Too Long; Didn't Read)

Meteorologists and climatologists use several methods for predicting the weather: the climatology, analog, and persistence and trends methods along with predicting the weather by using supercomputers in numerical or statistical weather prediction.

Climatology Method

The climatology method offers a simple technique for generating a weather forecast. Meteorologists use this method after reviewing weather statistics gathered over multiple years and calculating the averages. They predict the weather for a specific day and location based on the weather conditions for that same day for several years in the past.

A forecaster could examine the averages for Labor Day in Virginia, for example, to predict the weather for the upcoming Labor Day. The climatology method works when weather patterns remain in place, but in situations where outside factors change the weather frequently, as in climate changes due to global warming, the climatology method is not the best choice for predicting the weather, as it will more than likely not be accurate.

Analog Method

The analog method is a difficult method to use when predicting the weather because it requires finding a day in the past with weather similar to the current forecast, which is difficult to do. For example, suppose the current forecast indicates a warm day with a cold front imminent in the region of the forecast.

The weather person might remember a similar day in the past month, a warm day with a cold front arriving, which led to the development of thunderstorms later in the day. The forecaster could predict the same type of weather based on the analog comparison, but even small differences between the past and the present can change the outcome, which is why the analog method may not be the right choice to compile a weather forecast.

You may not use this font for commercial purposes. Nike logo font download. Basic InfomartionFont family: Nike Combat Stencil Font subfamily identification: Regular Unique identifier: Nike Combat Stencil:Version 1.00 Full font name: Nike Combat Stencil Version: Version 1.00 February 14, 2015, initial release Postscript font name: NikeCombatStencil Description: This font was created using FontCreator 7.5 from High-Logic.com License: This font is made with the home edition of FontCreator.

Persistence and Trends Method

The persistence and trends method requires little to no skill to predict the weather because it relies on past trends. In an ideal world, the atmosphere changes slowly, which equates to a forecast tomorrow that stays the same as today, with a hat tip to the climate's norm for the specific time of year. This method requires only that you stay abreast of current temperatures and conditions and know the region's climate averages.

Numerical Weather Prediction

Numerical weather prediction relies on computers to predict the weather. Massive supercomputers, complete with software forecasting models, help meteorologists make weather predictions based on multiple conditions in the atmosphere such as temperatures, wind speed, high- and low-pressure systems, rainfall, snowfall and other conditions.

The weather person reviews the data to determine the weather forecast for the day. The forecast is only as good as the algorithms used by the computer's software to predict the weather. If some of the equations lack precision, they lead to errors. All in all, numerical weather prediction provides the best means to forecast the upcoming meteorological conditions when compared with the other methods.

  • Jupiterimages/Photos.com/Getty Images
Forecast of surface pressures five days into the future for the North Pacific, North America, and the North Atlantic Ocean
Part of the nature series
Weather
  • Dry season
  • Cloud
  • Downburst
  • Thunderstorm
  • Mesocyclone
  • Tornado
  • Extratropical cyclone
  • Tropical cyclone
  • Dust storm
  • Monsoon
  • Winter storm
  • Drizzle
  • Hail
  • Rain
  • Snow
  • Cloud
  • Fog
  • Severe weather

Weather forecasting is the application of science and technology to predict the conditions of the atmosphere for a given location and time. People have attempted to predict the weather informally for millennia and formally since the 19th century. Weather forecasts are made by collecting quantitative data about the current state of the atmosphere at a given place and using meteorology to project how the atmosphere will change.

Once calculated by hand based mainly upon changes in barometric pressure, current weather conditions, and sky condition or cloud cover, weather forecasting now relies on computer-based models that take many atmospheric factors into account.[1] Human input is still required to pick the best possible forecast model to base the forecast upon, which involves pattern recognition skills, teleconnections, knowledge of model performance, and knowledge of model biases. The inaccuracy of forecasting is due to the chaotic nature of the atmosphere, the massive computational power required to solve the equations that describe the atmosphere, the error involved in measuring the initial conditions, and an incomplete understanding of atmospheric processes. Hence, forecasts become less accurate as the difference between current time and the time for which the forecast is being made (the range of the forecast) increases. The use of ensembles and model consensus help narrow the error and pick the most likely outcome.

There are a variety of end uses to weather forecasts. Weather warnings are important forecasts because they are used to protect life and property. Forecasts based on temperature and precipitation are important to agriculture, and therefore to traders within commodity markets. Temperature forecasts are used by utility companies to estimate demand over coming days. On an everyday basis, people use weather forecasts to determine what to wear on a given day. Since outdoor activities are severely curtailed by heavy rain, snow and wind chill, forecasts can be used to plan activities around these events, and to plan ahead and survive them. In 2009, the US spent $5.1 billion on weather forecasting.[2]

  • 1History
  • 3Techniques
  • 4Communicating forecasts to the public
  • 5Specialist forecasting
    • 5.7Military applications
  • 9External links

History[edit]

Ancient forecasting[edit]

For millennia people have tried to forecast the weather. In 650 BC, the Babylonians predicted the weather from cloud patterns as well as astrology. In about 350 BC, Aristotle described weather patterns in Meteorologica.[3] Later, Theophrastus compiled a book on weather forecasting, called the Book of Signs.[4]Chinese weather prediction lore extends at least as far back as 300 BC,[5] which was also around the same time ancient Indian astronomers developed weather-prediction methods.[6] In New Testament times, Jesus himself referred to deciphering and understanding local weather patterns, by saying, 'When evening comes, you say, 'It will be fair weather, for the sky is red', and in the morning, 'Today it will be stormy, for the sky is red and overcast.' You know how to interpret the appearance of the sky, but you cannot interpret the signs of the times.'[7]

In 904 AD, Ibn Wahshiyya's Nabatean Agriculture, translated into Arabic from an earlier Aramaic work,[8] discussed the weather forecasting of atmospheric changes and signs from the planetary astral alterations; signs of rain based on observation of the lunar phases; and weather forecasts based on the movement of winds.[9]

Ancient weather forecasting methods usually relied on observed patterns of events, also termed pattern recognition. For example, it might be observed that if the sunset was particularly red, the following day often brought fair weather. This experience accumulated over the generations to produce weather lore. However, not all[which?] of these predictions prove reliable, and many of them have since been found not to stand up to rigorous statistical testing.[10]

Modern methods[edit]

The Royal Charter sank in an 1859 storm, stimulating the establishment of modern weather forecasting.

It was not until the invention of the electric telegraph in 1835 that the modern age of weather forecasting began.[11] Before that, the fastest that distant weather reports could travel was around 100 miles per day (160 km/d), but was more typically 40–75 miles per day (60–120 km/day) (whether by land or by sea).[12][13] By the late 1840s, the telegraph allowed reports of weather conditions from a wide area to be received almost instantaneously,[14] allowing forecasts to be made from knowledge of weather conditions further upwind.

The two men credited with the birth of forecasting as a science were an officer of the Royal NavyFrancis Beaufort and his protégéRobert FitzRoy. Both were influential men in British naval and governmental circles, and though ridiculed in the press at the time, their work gained scientific credence, was accepted by the Royal Navy, and formed the basis for all of today's weather forecasting knowledge.[15][16]

Beaufort developed the Wind Force Scale and Weather Notation coding, which he was to use in his journals for the remainder of his life. He also promoted the development of reliable tide tables around British shores, and with his friend William Whewell, expanded weather record-keeping at 200 British Coast guard stations.

Robert FitzRoy was appointed in 1854 as chief of a new department within the Board of Trade to deal with the collection of weather data at sea as a service to mariners. This was the forerunner of the modern Meteorological Office.[16] All ship captains were tasked with collating data on the weather and computing it, with the use of tested instruments that were loaned for this purpose.[17]

Weather map of Europe, December 10, 1887.

A storm in 1859 that caused the loss of the Royal Charter inspired FitzRoy to develop charts to allow predictions to be made, which he called 'forecasting the weather', thus coining the term 'weather forecast'.[17] Fifteen land stations were established to use the telegraph to transmit to him daily reports of weather at set times leading to the first gale warning service. His warning service for shipping was initiated in February 1861, with the use of telegraph communications. The first daily weather forecasts were published in The Times in 1861.[16] In the following year a system was introduced of hoisting storm warning cones at the principal ports when a gale was expected.[18] The 'Weather Book' which FitzRoy published in 1863 was far in advance of the scientific opinion of the time.

As the electric telegraph network expanded, allowing for the more rapid dissemination of warnings, a national observational network was developed, which could then be used to provide synoptic analyses. Instruments to continuously record variations in meteorological parameters using photography were supplied to the observing stations from Kew Observatory – these cameras had been invented by Francis Ronalds in 1845 and his barograph had earlier been used by FitzRoy.[19][20]

To convey accurate information, it soon became necessary to have a standard vocabulary describing clouds; this was achieved by means of a series of classifications first achieved by Luke Howard in 1802, and standardized in the International Cloud Atlas of 1896.

Numerical prediction[edit]

It was not until the 20th century that advances in the understanding of atmospheric physics led to the foundation of modern numerical weather prediction. In 1922, English scientist Lewis Fry Richardson published 'Weather Prediction By Numerical Process',[21] after finding notes and derivations he worked on as an ambulance driver in World War I. He described therein how small terms in the prognostic fluid dynamics equations governing atmospheric flow could be neglected, and a finite differencing scheme in time and space could be devised, to allow numerical prediction solutions to be found.

Richardson envisioned a large auditorium of thousands of people performing the calculations and passing them to others. However, the sheer number of calculations required was too large to be completed without the use of computers, and the size of the grid and time steps led to unrealistic results in deepening systems. It was later found, through numerical analysis, that this was due to numerical instability.[22] The first computerised weather forecast was performed by a team composed of American meteorologists Jule Charney, Philip Thompson, Larry Gates, and Norwegian meteorologist Ragnar Fjørtoft, applied mathematician John von Neumann, and ENIAC programmer Klara Dan von Neumann.[23][24][25] Practical use of numerical weather prediction began in 1955,[26] spurred by the development of programmable electronic computers.

Broadcasts[edit]

The first ever daily weather forecasts were published in The Times on August 1, 1861, and the first weather maps were produced later in the same year.[27] In 1911, the Met Office began issuing the first marine weather forecasts via radio transmission. These included gale and storm warnings for areas around Great Britain.[28] In the United States, the first public radio forecasts were made in 1925 by Edward B. 'E.B.' Rideout, on WEEI, the Edison Electric Illuminating station in Boston.[29] Rideout came from the U.S. Weather Bureau, as did WBZ weather forecaster G. Harold Noyes in 1931.

The world's first televised weather forecasts, including the use of weather maps, were experimentally broadcast by the BBC in 1936. This was brought into practice in 1949 after World War II. George Cowling gave the first weather forecast while being televised in front of the map in 1954.[30][31] In America, experimental television forecasts were made by James C Fidler in Cincinnati in either 1940 or 1947 on the DuMont Television Network.[29][32] In the late 1970s and early 80s, John Coleman, the first weatherman on ABC-TV's Good Morning America, pioneered the use of on-screen weather satellite information and computer graphics for television forecasts.[33] Coleman was a co-founder of The Weather Channel (TWC) in 1982. TWC is now a 24-hour cable network. Some weather channels have started broadcasting on live broadcasting programs such as YouTube and Periscope to reach more viewers.

How models create forecasts[edit]

An example of 500 mbargeopotential height and absolute vorticity prediction from a numerical weather prediction model

The basic idea of numerical weather prediction is to sample the state of the fluid at a given time and use the equations of fluid dynamics and thermodynamics to estimate the state of the fluid at some time in the future. The main inputs from country-based weather services are surface observations from automated weather stations at ground level over land and from weather buoys at sea. The World Meteorological Organization acts to standardize the instrumentation, observing practices and timing of these observations worldwide. Stations either report hourly in METAR reports,[34] or every six hours in SYNOP reports.[35] Sites launch radiosondes, which rise through the depth of the troposphere and well into the stratosphere.[36] Data from weather satellites are used in areas where traditional data sources are not available.[37][38][39] Compared with similar data from radiosondes, the satellite data has the advantage of global coverage, however at a lower accuracy and resolution.[40]Meteorological radar provide information on precipitation location and intensity, which can be used to estimate precipitation accumulations over time.[41] Additionally, if a pulse Dopplerweather radar is used then wind speed and direction can be determined.[42]

Modern weather predictions aid in timely evacuations and potentially save lives and prevent property damage

Commerce provides pilot reports along aircraft routes,[43] and ship reports along shipping routes. Research flights using reconnaissance aircraft fly in and around weather systems of interest such as tropical cyclones.[44][45] Reconnaissance aircraft are also flown over the open oceans during the cold season into systems that cause significant uncertainty in forecast guidance, or are expected to be of high impact 3–7 days into the future over the downstream continent.[46]

Models are initialized using this observed data. The irregularly spaced observations are processed by data assimilation and objective analysis methods, which perform quality control and obtain values at locations usable by the model's mathematical algorithms (usually an evenly spaced grid). The data are then used in the model as the starting point for a forecast.[47] Commonly, the set of equations used to predict the known as the physics and dynamics of the atmosphere are called primitive equations. These equations are initialized from the analysis data and rates of change are determined. The rates of change predict the state of the atmosphere a short time into the future. The equations are then applied to this new atmospheric state to find new rates of change, and these new rates of change predict the atmosphere at a yet further time into the future. This time stepping procedure is continually repeated until the solution reaches the desired forecast time.

The length of the time step chosen within the model is related to the distance between the points on the computational grid, and is chosen to maintain numerical stability.[48] Time steps for global models are on the order of tens of minutes,[49] while time steps for regional models are between one and four minutes.[50] The global models are run at varying times into the future. The Met Office's Unified Model is run six days into the future,[51] the European Centre for Medium-Range Weather Forecasts model is run out to 10 days into the future,[52] while the Global Forecast System model run by the Environmental Modeling Center is run 16 days into the future.[53] The visual output produced by a model solution is known as a prognostic chart, or prog.[54] The raw output is often modified before being presented as the forecast. This can be in the form of statistical techniques to remove known biases in the model, or of adjustment to take into account consensus among other numerical weather forecasts.[55] MOS or model output statistics is a technique used to interpret numerical model output and produce site-specific guidance. This guidance is presented in coded numerical form, and can be obtained for nearly all National Weather Service reporting stations in the United States. As proposed by Edward Lorenz in 1963, long range forecasts, those made at a range of two weeks or more, are impossible to definitively predict the state of the atmosphere, owing to the chaotic nature of the fluid dynamics equations involved. In numerical models, extremely small errors in initial values double roughly every five days for variables such as temperature and wind velocity.[56]

Essentially, a model is a computer program that produces meteorological information for future times at given locations and altitudes. Within any modern model is a set of equations, known as the primitive equations, used to predict the future state of the atmosphere.[57] These equations—along with the ideal gas law—are used to evolve the density, pressure, and potential temperaturescalar fields and the velocityvector field of the atmosphere through time. Additional transport equations for pollutants and other aerosols are included in some primitive-equation mesoscale models as well.[58] The equations used are nonlinear partial differential equations, which are impossible to solve exactly through analytical methods,[59] with the exception of a few idealized cases.[60] Therefore, numerical methods obtain approximate solutions. Different models use different solution methods: some global models use spectral methods for the horizontal dimensions and finite difference methods for the vertical dimension, while regional models and other global models usually use finite-difference methods in all three dimensions.[59]

Techniques[edit]

Persistence[edit]

The simplest method of forecasting the weather, persistence, relies upon today's conditions to forecast the conditions tomorrow. This can be a valid way of forecasting the weather when it is in a steady state, such as during the summer season in the tropics. This method of forecasting strongly depends upon the presence of a stagnant weather pattern. Therefore, when in a fluctuating weather pattern, this method of forecasting becomes inaccurate. It can be useful in both short range forecasts and long range forecasts.[61]

Use of a barometer[edit]

Measurements of barometric pressure and the pressure tendency (the change of pressure over time) have been used in forecasting since the late 19th century.[62] The larger the change in pressure, especially if more than 3.5 hPa (2.6 mmHg), the larger the change in weather can be expected. If the pressure drop is rapid, a low pressure system is approaching, and there is a greater chance of rain. Rapid pressure rises are associated with improving weather conditions, such as clearing skies.[63]

Looking at the sky[edit]

Marestail shows moisture at high altitude, signalling the later arrival of wet weather.

Along with pressure tendency, the condition of the sky is one of the more important parameters used to forecast weather in mountainous areas. Thickening of cloud cover or the invasion of a higher cloud deck is indicative of rain in the near future. High thin cirrostratus clouds can create halos around the sun or moon, which indicates an approach of a warm front and its associated rain.[64] Morning fog portends fair conditions, as rainy conditions are preceded by wind or clouds that prevent fog formation. The approach of a line of thunderstorms could indicate the approach of a cold front. Cloud-free skies are indicative of fair weather for the near future.[65] A bar can indicate a coming tropical cyclone. The use of sky cover in weather prediction has led to various weather lore over the centuries.[10]

Nowcasting[edit]

The forecasting of the weather within the next six hours is often referred to as nowcasting.[66] In this time range it is possible to forecast smaller features such as individual showers and thunderstorms with reasonable accuracy, as well as other features too small to be resolved by a computer model. A human given the latest radar, satellite and observational data will be able to make a better analysis of the small scale features present and so will be able to make a more accurate forecast for the following few hours.[67] However, there are now expert systems using those data and mesoscale numerical model to make better extrapolation, including evolution of those features in time.

Use of forecast models[edit]

An example of 500 mbargeopotential height prediction from a numerical weather prediction model

In the past, the human forecaster was responsible for generating the entire weather forecast based upon available observations.[68] Today, human input is generally confined to choosing a model based on various parameters, such as model biases and performance.[69] Using a consensus of forecast models, as well as ensemble members of the various models, can help reduce forecast error.[70] However, regardless how small the average error becomes with any individual system, large errors within any particular piece of guidance are still possible on any given model run.[71] Humans are required to interpret the model data into weather forecasts that are understandable to the end user. Humans can use knowledge of local effects that may be too small in size to be resolved by the model to add information to the forecast. While increasing accuracy of forecast models implies that humans may no longer be needed in the forecast process at some point in the future, there is currently still a need for human intervention.[72]

Analog technique[edit]

The analog technique is a complex way of making a forecast, requiring the forecaster to remember a previous weather event that is expected to be mimicked by an upcoming event. What makes it a difficult technique to use is that there is rarely a perfect analog for an event in the future.[73] Some call this type of forecasting pattern recognition. It remains a useful method of observing rainfall over data voids such as oceans,[74] as well as the forecasting of precipitation amounts and distribution in the future. A similar technique is used in medium range forecasting, which is known as teleconnections, when systems in other locations are used to help pin down the location of another system within the surrounding regime.[75] An example of teleconnections are by using El Niño-Southern Oscillation (ENSO) related phenomena.[76]

Communicating forecasts to the public[edit]

An example of a two-day weather forecast in the visual style that an American newspaper might use. Temperatures are given in Fahrenheit.

Most end users of forecasts are members of the general public. Thunderstorms can create strong winds and dangerous lightning strikes that can lead to deaths, power outages,[77] and widespread hail damage. Heavy snow or rain can bring transportation and commerce to a stand-still,[78] as well as cause flooding in low-lying areas.[79] Excessive heat or cold waves can sicken or kill those with inadequate utilities, and droughts can impact water usage and destroy vegetation.

Several countries employ government agencies to provide forecasts and watches/warnings/advisories to the public in order to protect life and property and maintain commercial interests. Knowledge of what the end user needs from a weather forecast must be taken into account to present the information in a useful and understandable way. Examples include the National Oceanic and Atmospheric Administration's National Weather Service (NWS)[80] and Environment Canada's Meteorological Service (MSC).[81] Traditionally, newspaper, television, and radio have been the primary outlets for presenting weather forecast information to the public. In addition, some cities had weather beacons. Increasingly, the internet is being used due to the vast amount of specific information that can be found.[82] In all cases, these outlets update their forecasts on a regular basis.

Severe weather alerts and advisories[edit]

A major part of modern weather forecasting is the severe weather alerts and advisories that the national weather services issue in the case that severe or hazardous weather is expected. This is done to protect life and property.[83] Some of the most commonly known of severe weather advisories are the severe thunderstorm and tornado warning, as well as the severe thunderstorm and tornado watch. Other forms of these advisories include winter weather, high wind, flood, tropical cyclone, and fog.[84] Severe weather advisories and alerts are broadcast through the media, including radio, using emergency systems as the Emergency Alert System, which break into regular programming.[85]

Low temperature forecast[edit]

The low temperature forecast for the current day is calculated using the lowest temperature found between 7pm that evening through 7am the following morning.[86] So, in short, today's forecasted low is most likely tomorrow's low temperature.

Weather predictions pdf

Specialist forecasting[edit]

There are a number of sectors with their own specific needs for weather forecasts and specialist services are provided to these users.

Air traffic[edit]

Ash cloud from the 2008 eruption of Chaitén volcano stretching across Patagonia from the Pacific to the Atlantic Ocean

Because the aviation industry is especially sensitive to the weather, accurate weather forecasting is essential. Fog or exceptionally low ceilings can prevent many aircraft from landing and taking off.[87]Turbulence and icing are also significant in-flight hazards.[88] Thunderstorms are a problem for all aircraft because of severe turbulence due to their updrafts and outflow boundaries,[89] icing due to the heavy precipitation, as well as large hail, strong winds, and lightning, all of which can cause severe damage to an aircraft in flight.[90]Volcanic ash is also a significant problem for aviation, as aircraft can lose engine power within ash clouds.[91] On a day-to-day basis airliners are routed to take advantage of the jet stream tailwind to improve fuel efficiency.[92] Aircrews are briefed prior to takeoff on the conditions to expect en route and at their destination.[93] Additionally, airports often change which runway is being used to take advantage of a headwind. This reduces the distance required for takeoff, and eliminates potential crosswinds.[94]

Marine[edit]

Commercial and recreational use of waterways can be limited significantly by wind direction and speed, wave periodicity and heights, tides, and precipitation. These factors can each influence the safety of marine transit. Consequently, a variety of codes have been established to efficiently transmit detailed marine weather forecasts to vessel pilots via radio, for example the MAFOR (marine forecast).[95] Typical weather forecasts can be received at sea through the use of RTTY, Navtex and Radiofax.

Agriculture[edit]

Farmers rely on weather forecasts to decide what work to do on any particular day. For example, drying hay is only feasible in dry weather. Prolonged periods of dryness can ruin cotton, wheat,[96] and corn crops. While corn crops can be ruined by drought, their dried remains can be used as a cattle feed substitute in the form of silage.[97]Frosts and freezes play havoc with crops both during the spring and fall. For example, peach trees in full bloom can have their potential peach crop decimated by a spring freeze.[98]Orange groves can suffer significant damage during frosts and freezes, regardless of their timing.[99]

Forestry[edit]

Weather forecasting of wind, precipitations and humidity is essential for preventing and controlling wildfires. Different indices, like the Forest fire weather index and the Haines Index, have been developed to predict the areas more at risk to experience fire from natural or human causes. Conditions for the development of harmful insects can be predicted by forecasting the evolution of weather, too.

Utility companies[edit]

An air handling unit is used for the heating and cooling of air in a central location (click on image for legend).

Electricity and gas companies rely on weather forecasts to anticipate demand, which can be strongly affected by the weather. They use the quantity termed the degree day to determine how strong of a use there will be for heating (heating degree day) or cooling (cooling degree day). These quantities are based on a daily average temperature of 65 °F (18 °C). Cooler temperatures force heating degree days (one per degree Fahrenheit), while warmer temperatures force cooling degree days.[100] In winter, severe cold weather can cause a surge in demand as people turn up their heating.[101] Similarly, in summer a surge in demand can be linked with the increased use of air conditioning systems in hot weather.[102] By anticipating a surge in demand, utility companies can purchase additional supplies of power or natural gas before the price increases, or in some circumstances, supplies are restricted through the use of brownouts and blackouts.[103]

Other commercial companies[edit]

Increasingly, private companies pay for weather forecasts tailored to their needs so that they can increase their profits or avoid large losses.[104] For example, supermarket chains may change the stocks on their shelves in anticipation of different consumer spending habits in different weather conditions. Weather forecasts can be used to invest in the commodity market, such as futures in oranges, corn, soybeans, and oil.[105]

Military applications[edit]

United Kingdom Armed Forces[edit]

Weather Analysis And Forecasting Pdf

Royal Navy

Weather Forecasting Handbook Pdf

The UK Royal Navy, working with the UK Met Office, has its own specialist branch of weather observers and forecasters, as part of the Hydrographic and Meteorological (HM) specialisation, who monitor and forecast operational conditions across the globe, to provide accurate and timely weather and oceanographic information to submarines, ships and Fleet Air Arm aircraft.

Royal Air Force[edit]

Dbms software download free. A mobile unit in the RAF, working with the UK Met Office, forecasts the weather for regions in which British, allied servicemen and women are deployed. A group based at Camp Bastion provides forecasts for the British armed forces in Afghanistan.[106]

United States Armed Forces[edit]

US Navy[edit]

Emblem of JTWC Joint Typhoon Warning Center

Similar to the private sector, military weather forecasters present weather conditions to the war fighter community. Military weather forecasters provide pre-flight and in-flight weather briefs to pilots and provide real time resource protection services for military installations. Naval forecasters cover the waters and ship weather forecasts. The United States Navy provides a special service to both themselves and the rest of the federal government by issuing forecasts for tropical cyclones across the Pacific and Indian Oceans through their Joint Typhoon Warning Center.[107]

US Air Force[edit]

Within the United States, Air Force Weather provides weather forecasting for the Air Force and the Army. Air Force forecasters cover air operations in both wartime and peacetime operations and provide Army support;[108]United States Coast Guard marine science technicians provide ship forecasts for ice breakers and other various operations within their realm;[109] and Marine forecasters provide support for ground- and air-based United States Marine Corps operations.[110] All four military branches take their initial enlisted meteorology technical training at Keesler Air Force Base.[111] Military and civilian forecasters actively cooperate in analyzing, creating and critiquing weather forecast products.

See also[edit]

Wikisource has original text related to this article:

References[edit]

  1. ^Dirmeyer, Paul A.; Schlosser, C. Adam; Brubaker, Kaye L. (February 1, 2009). 'Precipitation, Recycling, and Land Memory: An Integrated Analysis'(PDF). Journal of Hydrometeorology. 10 (1): 278–288. Bibcode:2009JHyMe.10.278D. doi:10.1175/2008JHM1016.1. hdl:1721.1/52326.
  2. ^Fostering Innovation, Creating Jobs, Driving Better Decisions: The Value of Government Data. Economics and Statistics Administration Office of the Chief Economist. July 2014. p. 15. Archived from the original on August 29, 2018. Retrieved December 30, 2018.
  3. ^Meteorology by Lisa Alter
  4. ^'Weather: Forecasting from the Beginning'
  5. ^University of California Museum of Paleontology. 'Aristotle (384-322 B.C.E.)'. Retrieved January 12, 2008.
  6. ^David Pingree (December 14, 2017). 'The Indian and Pseudo-indian Passages in Greek and Latin Astronomical and Astrological Texts'(PDF). pp. 141–195 [143–4]. Retrieved March 1, 2010.[permanent dead link]
  7. ^'Bible Gateway passage: Matthew 16:2-3 - English Standard Version'. Bible Gateway. Retrieved December 1, 2016.
  8. ^Carrara, A.A. 'Geoponica and Nabatean Agriculture: A New Approach into Their Sources and Authorship'. Arabic Sciences and Philosophy. 16 (1): 123–130.
  9. ^Fahd, Toufic. 'Encyclopedia of the History of Arabic Science': 842.Cite journal requires journal= (help), in Rashed, Roshdi; Morelon, Régis (1996). Encyclopedia of the History of Arabic Science. 3. Routledge. pp. 813–852. ISBN978-0-415-12410-2.
  10. ^ abJerry Wilson. 'Skywatch: Signs of the Weather'. Archived from the original on January 6, 2013. Retrieved May 25, 2008.
  11. ^David Hochfelder (1998). 'Joseph Henry: Inventor of the Telegraph?'. Smithsonian Institution. Archived from the original on June 26, 2006. Retrieved June 29, 2006.
  12. ^Ausman, Megaera. 'USPS Historian'. About the United States Postal Service. USPS. Retrieved April 28, 2013.
  13. ^Mail, Royal. '(UK)'. British Postal Museum. Postal Heritage Trust. Archived from the original on March 18, 2013. Retrieved April 28, 2013.
  14. ^Encyclopædia Britannica. 'Telegraph'. Retrieved May 5, 2007.
  15. ^Eric D. Craft (2003). 'An Economic History of Weather Forecasting'. Archived from the original on May 3, 2007. Retrieved April 15, 2007.
  16. ^ abc'The birth of the weather forecast'. BBC News. April 30, 2015. Retrieved April 30, 2015.
  17. ^ abMellersh, H. E. L. (1968). FitzRoy of the Beagle. Hart-Davis. ISBN0-246-97452-4
  18. ^Kington, John (1997). Mike Hulme and Elaine Barrow (ed.). Climates of the British Isles: Present, Past and Future. Routledge. p. 147.
  19. ^Ronalds, B. F. (2016). Sir Francis Ronalds: Father of the Electric Telegraph. London: Imperial College Press. ISBN978-1-78326-917-4.
  20. ^Ronalds, B. F. (June 2016). 'Sir Francis Ronalds and the Early Years of the Kew Observatory'. Weather. 71 (6): 131–134. Bibcode:2016Wthr..71.131R. doi:10.1002/wea.2739.
  21. ^Richardson, Lewis Fry, Weather Prediction by Numerical Process (Cambridge, England: Cambridge University Press, 1922). Available on-line at: Internet Archive.org.
  22. ^Lynch, Peter (2006). The Emergence of Numerical Weather Prediction. Cambridge University Press
  23. ^Charney, Fjörtoft and von Neumann, 1950, Numerical Integration of the Barotropic Vorticity Equation Tellus, 2, 237–254
  24. ^Witman, Sarah (June 16, 2017). 'Meet the Computer Scientist You Should Thank For Your Smartphone's Weather App'. Smithsonian. Retrieved July 22, 2017.
  25. ^Edwards, Paul N. (2010). A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming. The MIT Press. ISBN978-0262013925. Archived from the original on January 27, 2012.
  26. ^Paul N. Edwards. 'Atmospheric General Circulation Modeling'. Archived March 25, 2008, at the Wayback Machine Retrieved February 16, 2007.
  27. ^Helen Czerski (August 1, 2011). 'Orbit: Earth's Extraordinary Journey: 150 years since the first UK weather 'forecast''. BBC. Retrieved November 5, 2013.
  28. ^Met Office (2012). 'National Meteorological Library and Fact Sheet 8 -- The Shipping Forecast'(PDF). 1. pp. 3–5. Retrieved April 10, 2013.
  29. ^ ab'meteorology Facts, information, pictures Encyclopedia.com articles about meteorology'. Encyclopedia.com. Retrieved February 21, 2014.
  30. ^'BBC - Weather - A history of TV weather forecasts'. BBC Weather. Archived from the original on January 2, 2013.
  31. ^Hunt, Roger, 'The end of weather forecasting at Met Office London', Weather, June 2007, v.62, no.6, pp.143–146
  32. ^'Answers: Understanding weather forecasts'. USA Today. February 8, 2006.
  33. ^CJR Rewind: Hot Air, Columbia Journalism Review, reprint, first published in the January/February 2010 issue.
  34. ^National Climatic Data Center. 'Key to METAR Surface Weather Observations'. Retrieved March 9, 2008.
  35. ^UNISYS. 'SYNOP Data Format (FM-12): Surface Synoptic Observations'. Archived December 30, 2007, at the Wayback Machine Retrieved May 25, 2008.
  36. ^Gaffen, Dian J. (June 7, 2007). 'Radiosonde Observations and Their Use in SPARC-Related Investigations'. Retrieved 2008-05-25.
  37. ^NASA. 'Interactive Global Composite Weather Satellite Images'Archived May 31, 2008, at the Wayback Machine. Retrieved May 25, 2008.
  38. ^NOAA. Goes Eastern US Sector Infrared Image. Retrieved May 25, 2008.
  39. ^Met Office. 'Satellite applications'. Retrieved May 25, 2008.
  40. ^Tony Reale. 'ATOVS Sounding Products (ITSVC-12)'. Retrieved May 25, 2008.
  41. ^Andrew Treloar and Peter Brookhouse (July 1999). 'The use of accumulated rainfall maps from weather radar systems to assist wildfire detection reconnaissance'. Archived from the original on June 7, 2009.
  42. ^University of Washington. 'An improving forecast'. Retrieved April 15, 2007 Archived October 24, 2007, at the Wayback Machine
  43. ^Ballish, Bradley A. and V. Krishna Kumar (May 23, 2008). 'Investigation of Systematic Differences in Aircraft and Radiosonde Temperatures with Implications for NWP and Climate Studies'. Retrieved 2008-05-25.
  44. ^403rd Wing (2011). 'The Hurricane Hunters'. 53rd Weather Reconnaissance Squadron. Retrieved March 30, 2006.
  45. ^Lee, Christopher (October 8, 2007). 'Drone, Sensors May Open Path Into Eye of Storm'. The Washington Post. Retrieved February 22, 2008.
  46. ^'NOAA Dispatches High-Tech Research Plane to Improve Winter Storm Forecasts'. National Oceanic and Atmospheric Administration. January 12, 2010. Retrieved December 22, 2010.
  47. ^University Corporation for Atmospheric Research (August 14, 2007). 'The WRF Variational Data Assimilation System (WRF-Var)'. Retrieved 2008-05-25.
  48. ^Pielke, Roger A. (2002). Mesoscale Meteorological Modeling. Academic Press. pp. 285–287. ISBN978-0-12-554766-6.
  49. ^Sunderam, V. S.; van Albada, G. Dick; Peter, M. A.; Sloot, J. J. Dongarra (2005). Computational Science – ICCS 2005: 5th International Conference, Atlanta, GA, USA, May 22–25, 2005, Proceedings, Part 1. Springer. p. 132. ISBN978-3-540-26032-5.
  50. ^Zwieflhofer, Walter; Kreitz, Norbert; European Centre for Medium Range Weather Forecasts (2001). Developments in teracomputing: proceedings of the ninth ECMWF Workshop on the Use of High Performance Computing in Meteorology. World Scientific. p. 276. ISBN978-981-02-4761-4.CS1 maint: multiple names: authors list (link)
  51. ^Chan, Johnny C. L. & Jeffrey D. Kepert (2010). Global Perspectives on Tropical Cyclones: From Science to Mitigation. World Scientific. pp. 295–296. ISBN978-981-4293-47-1.
  52. ^Holton, James R. (2004). An introduction to dynamic meteorology, Volume 1. Academic Press. p. 480. ISBN978-0-12-354015-7.
  53. ^Brown, Molly E. (2008). Famine early warning systems and remote sensing data. Famine Early Warning Systems and Remote Sensing Data. Springer. p. 121. Bibcode:2008fews.book...B. ISBN978-3-540-75367-4.
  54. ^Ahrens, C. Donald (2008). Essentials of meteorology: an invitation to the atmosphere. Cengage Learning. p. 244. ISBN978-0-495-11558-8.
  55. ^Daniel Andersson (2007). 'Improved accuracy of surrogate models using output postprocessing'. Retrieved May 25, 2008.
  56. ^Cox, John D. (2002). Storm Watchers. John Wiley & Sons, Inc. pp. 222–224. ISBN978-0-471-38108-2.
  57. ^Pielke, Roger A. (2002). Mesoscale Meteorological Modeling. Academic Press. pp. 48–49. ISBN978-0-12-554766-6.
  58. ^Pielke, Roger A. (2002). Mesoscale Meteorological Modeling. Academic Press. pp. 18–19. ISBN978-0-12-554766-6.
  59. ^ abStrikwerda, John C. (2004). Finite difference schemes and partial differential equations. SIAM. pp. 165–170. ISBN978-0-89871-567-5.
  60. ^Pielke, Roger A. (2002). Mesoscale Meteorological Modeling. Academic Press. p. 65. ISBN978-0-12-554766-6.
  61. ^University of Illinois at Urbana-Champaign. 'Persistence Forecasting: Today equals Tomorrow'. Retrieved February 16, 2007.
  62. ^USA Today. 'Understanding air pressure'. Retrieved May 25, 2008.
  63. ^Weather Doctor. 'Applying The Barometer To Weather Watching'. Retrieved May 25, 2008.
  64. ^Dennis Eskow (March 1983). 'Make Your Own Weather Forecasts'. Popular Mechanics. Vol. 159 no. 3. p. 148. Retrieved April 2, 2011.
  65. ^Mark Moore (March 25, 2009). 'Field Forecasting - A Short Summary'. Retrieved 2012-02-15.
  66. ^Glossary of Meteorology. [1] Retrieved May 26, 2015.
  67. ^E-notes.com. Weather and Climate What Is Nowcasting? Retrieved September 8, 2011.
  68. ^NASA. 'Weather Forecasting Through the Ages'. Retrieved May 25, 2008.
  69. ^Klaus Weickmann, Jeff Whitaker, Andres Roubicek and Catherine Smith (December 1, 2001). 'The Use of Ensemble Forecasts to Produce Improved Medium Range (3–15 days) Weather Forecasts'. Climate Diagnostics Center. Retrieved 2007-02-16. Archived August 27, 2009, at the Wayback Machine
  70. ^Todd Kimberlain (June 2007). 'TC Genesis, Track, and Intensity Forecating'. PowerPoint. Retrieved July 21, 2007.
  71. ^Richard J. Pasch, Mike Fiorino, and Chris Landsea. 'TPC/NHC'S Review of the NCEP Production Suite for 2006'. Retrieved May 5, 2008.[dead link]
  72. ^Roebber, P. J.; Bosart, L. F. (1996). 'The complex relationship between forecast skill and forecast value : A real-world analysis'. Weather and Forecasting. 11 (4): 544–559. Bibcode:1996WtFor.11.544R. doi:10.1175/1520-0434(1996)011<0544:TCRBFS>2.0.CO;2. ISSN0882-8156. Retrieved May 25, 2008.
  73. ^'Other Forecasting Methods: climatology, analogue and numerical weather prediction'. Retrieved February 16, 2006.
  74. ^Kenneth C. Allen. 'Pattern Recognition Techniques Applied to the NASA-ACTS Order-Wire Problem'. Retrieved February 16, 2007. Archived July 14, 2007, at the Wayback Machine
  75. ^Weather Associates, Inc. 'The Role of Teleconnections & Ensemble Forecasting in Extended- to Medium-Range Forecasting'. Retrieved February 16, 2007. Archived June 22, 2007, at the Wayback Machine
  76. ^Thinkquest.org. 'Teleconnections: Linking El Niño with Other Places'. Retrieved February 16, 2007. Archived April 20, 2007, at the Wayback Machine
  77. ^University of Illinois at Urbana-Champaign. 'Lightning'. Retrieved February 16, 2007.
  78. ^Associated Press (February 10, 2007). 'Upstate N.Y. residents dig out from heavy snow'. NBC News. Retrieved May 25, 2008.
  79. ^National Flood Insurance Program. 'Flood Risk Scenarios: Flash Flood'. Retrieved 2008-05-25. Archived March 13, 2014, at the Wayback Machine
  80. ^National Weather Service. About 'NOAA's National Weather Service'. Retrieved February 16, 2007.
  81. ^Environment Canada. 'Canadian Weather'. Retrieved February 16, 2007.
  82. ^Canadian Heritage. 'Primary Sources of Local Information'. Retrieved May 26, 2008. Archived June 5, 2008, at the Wayback Machine
  83. ^National Weather Service. National Weather Service Mission Statement. Retrieved May 25, 2008. Archived November 24, 2013, at the Wayback Machine
  84. ^Environment Canada. 'Weather watches, warnings and advisories'. Archived July 3, 2006, at the Wayback Machine Retrieved May 26, 2008.
  85. ^Federal Communications Commission. 'Emergency Alert System'. Retrieved May 26, 2008.
  86. ^Weather Channel - Calculation of Low Temperature ForecastArchived September 6, 2015, at the Wayback Machine
  87. ^Government Printing Office. Title 14: 'Aeronautics and Space'. Retrieved May 26, 2008. Archived June 13, 2011, at the Wayback Machine
  88. ^Aircraft Owners and Pilots Association. 'Aircraft Icing'. Retrieved May 26, 2008. Archived February 2, 2007, at the Wayback Machine
  89. ^National Weather Service Forecast Office Dodge City, Kansas. 'Aviation Hazards They Didn't Tell You About'. Retrieved May 26, 2008. Archived September 10, 2008, at the Wayback Machine
  90. ^Bureau of Meteorology (2006). 'Aviation Hazards: Thunderstorms and Deep Convection'Archived September 10, 2008, at the Wayback Machine. Retrieved May 26, 2008.
  91. ^'Volcanic Ash Aviation Hazard'. Retrieved May 26, 2008. Archived June 21, 2008, at the Wayback Machine
  92. ^Ned Rozell. 'Amazing flying machines allow time travel'. Retrieved May 8, 2008. Archived June 5, 2008, at the Wayback Machine
  93. ^National Weather Service. 'A Pilot's Guide to Aviation Weather Services'. Retrieved May 26, 2008. Archived June 24, 2008, at the Wayback Machine
  94. ^Eric C. King. 'Takeoff Tools Crosswind Calculator Instructions'. Retrieved May 26, 2008. Archived September 10, 2008, at the Wayback Machine
  95. ^Great Lakes and Seaway Shipping. 'MAFOR Weather Code'. Retrieved May 27, 2008.
  96. ^Blair Fannin. 'Dry weather conditions continue for Texas'. Retrieved May 26, 2008. Archived July 3, 2009, at the Wayback Machine
  97. ^Dr. Terry Mader. 'Drought Corn Silage'. Retrieved May 26, 2008. Archived October 5, 2011, at the Wayback Machine
  98. ^Kathryn C. Taylor. 'Peach Orchard Establishment and Young Tree Care'. Retrieved May 26, 2008. Archived December 24, 2008, at the Wayback Machine
  99. ^'After Freeze, Counting Losses to Orange Crop'. The New York Times. Associated Press. January 14, 1991. Retrieved May 26, 2008.
  100. ^Climate Prediction Center. 'Degree Day Explanation'Archived May 24, 2010, at the Wayback Machine. Retrieved May 25, 2008.
  101. ^'Futures/Options; Cold Weather Brings Surge in Prices of Heating Fuels'. The New York Times. February 26, 1993. Retrieved May 25, 2008.
  102. ^BBC News (July 25, 2006) 'Heatwave causes electricity surge'. Retrieved May 25, 2008.
  103. ^Toronto Catholic Schools. 'The Seven Key Messages of the Energy Drill Program'. Retrieved May 25, 2008. Archived February 17, 2012, at the Wayback Machine
  104. ^CSIRO. 'Providing specialized weather forecasts'. Retrieved May 25, 2008. Archived April 19, 2008, at the Wayback Machine
  105. ^Stephen Jewson and Rodrigo Caballero. 'The Use of Weather Forecasts in the Pricing of Weather Derivatives'. Retrieved May 25, 2008. Archived July 16, 2011, at the Wayback Machine
  106. ^Met Office. 'Weather forecasting for military operations'. Retrieved October 23, 2012.
  107. ^Joint Typhoon Warning Center. 'Joint Typhoon Warning Center Mission Statement'. Archived April 9, 2008, at the Wayback Machine Retrieved May 27, 2008.
  108. ^United States Air Force.'Air Force Weather Agency'. Retrieved May 26, 2008.
  109. ^United States Military. 'US Coast Guard Jobs - Enlisted Occupations'Archived March 12, 2016, at the Wayback Machine. Retrieved May 26, 2008.
  110. ^Rod Powers. 'United States Marine Corps Enlisted Job Descriptions and Qualification Factors: Field 68 - Meteorology and Oceanography (METOC)'. Retrieved 2008-05-26.
  111. ^Keesler Air Force Base. Military officers usually received their education from a civilian institution. 'Keesler News: March 9, 2006'Archived September 10, 2008, at the Wayback Machine. United States Air Force Retrieved May 26, 2008.

Further reading[edit]

  • Ian Roulstone & John Norbury (2013). Invisible in the Storm: the role of mathematics in understanding weather. Princeton University Press. ISBN978-0691152721.

External links[edit]


Meteorological agencies[edit]

These are academic or governmental meteorology organizations. Most provide at least a limited forecast for their area of interest on their website.

  • Meteo Suisse (Swiss Weather Agency)(in English)
  • Unidad de Meteorología - IVIC (Meteorology Unit - Venezuela Institute of Scientific Research)(in Spanish)
  • Instituto Nacional de Hidrometeorología(in Spanish)
  • National Meteorological Service of Slovenia based on Academa Application server and WebMet
  • Centro de Previsão de Tempo e Estudos Climáticos at INPE (Brazil)
  • National Weather Service United States of America
  • National Meteorological Center(China)

Other external links[edit]

  • Economic history and impact of weather forecasting from EH.net
  • Dynamic Weather Forecaster Iowa State University's online educational tool for weather forecasting
  • 'World Weather News by Radio'Popular Mechanics, January 1930, pp. 50–55, article on international weather report systems set up after World War One, using wireless broadcasting from various stations and ships worldwide
  • New Technology Allows Better Extreme Weather Forecasts; New technology that increases the warning time for tornadoes and hurricanes could potentially save hundreds of lives every year April 17, 2012
Retrieved from 'https://en.wikipedia.org/w/index.php?title=Weather_forecasting&oldid=918175208'
Coments are closed
Scroll to top